On Σ11 equivalence relations over the natural numbers

نویسندگان

  • Ekaterina B. Fokina
  • Sy-David Friedman
چکیده

We study the structure of Σ1 equivalence relations on hyperarithmetical subsets of ω under reducibilities given by hyperarithmetical or computable functions, called h-reducibility and FF-reducibility, respectively. We show that the structure is rich even when one fixes the number of properly Σ1 (i.e. Σ 1 1 but not ∆ 1 1) equivalence classes. We also show the existence of incomparable Σ1 equivalence relations that are complete as subsets of ω × ω with respect to the corresponding reducibility on sets. We study complete Σ1 equivalence relations (under both reducibilities) and show that existence of infinitely many properly Σ1 equivalence classes that are complete as Σ 1 1 sets (under the corresponding reducibility on sets) is necessary but not sufficient for a relation to be complete in the context of Σ1 equivalence relations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On equivalence relations Σ1-definable over H(κ)

Let κ be an uncountable regular cardinal. Call an equivalence relation on functions from κ into 2 Σ11-definable over H(κ) if there is a first order sentence φ and a parameter R ⊆ H(κ) such that functions f, g ∈ κ2 are equivalent iff for some h ∈ κ2, the structure 〈H(κ),∈, R, f, g, h〉 satisfies φ, where ∈, R, f , g, and h are interpretations of the symbols appearing in φ. All the values μ, 1 ≤ μ...

متن کامل

Cardinality of Equivalence Relations

This entry provides formulae for counting the number of equivalence relations and partial equivalence relations over a finite carrier set with given cardinality. To count the number of equivalence relations, we provide bijections between equivalence relations and set partitions [4], and then transfer the main results of the two AFP entries, Cardinality of Set Partitions [1] and Spivey’s General...

متن کامل

The Hierarchy of Equivalence Relations on the Natural Numbers Under Computable Reducibility

We define and elaborate upon the notion of computable reducibility between equivalence relations on the natural numbers, providing a natural computable analogue of Borel reducibility, and investigate the hierarchy to which it gives rise. The theory appears well suited for an analysis of equivalence relations on classes of c.e. structures, a rich context with many natural examples, such as the i...

متن کامل

FUZZY SUBGROUPS AND CERTAIN EQUIVALENCE RELATIONS

In this paper, we study an equivalence relation on the set of fuzzysubgroups of an arbitrary group G and give four equivalent conditions each ofwhich characterizes this relation. We demonstrate that with this equivalencerelation each equivalence class constitutes a lattice under the ordering of fuzzy setinclusion. Moreover, we study the behavior of these equivalence classes under theaction of a...

متن کامل

On certain semigroups of transformations that preserve double direction equivalence

Let TX be the full transformation semigroups on the set X. For an equivalence E on X, let TE(X) = {α ∈ TX : ∀(x, y) ∈ E ⇔ (xα, yα) ∈ E}It is known that TE(X) is a subsemigroup of TX. In this paper, we discussthe Green's *-relations, certain *-ideal and certain Rees quotient semigroup for TE(X).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Log. Q.

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2012